Operators on the Fréchet sequence spaces $${\varvec{ces(p+)}}$$ c e s ( p + ) , $$1\le p<\infty $$ 1 ≤ p < ∞
نویسندگان
چکیده
منابع مشابه
R-e-s-p-e-c-t.
Alex Muncy was still an apprentice at STIHL Inc. when the company enlisted him in revamping an automated packaging process. The package would contain the outdoor power equipment manufacturer’s signature trimmer line, the colorful cord used to give lawns a precise, neat appearance. The goal: satisfy the customer while cutting production costs. Muncy’s team developed a concept, designed the packa...
متن کاملNecessary conditions on composition operators acting between Besov spaces . The case 1 < s < n / p . III
Let G : R → R be a continuous function. Denote by TG the corresponding composition operator which sends f to G(f). Then we investigate consequences for the parameters s, p, and r of the inclusion TG (B p,q (R)) ⊂ B p,∞(R) . Here B p,q denotes a Besov space. 1991 Mathematics Subject Classification: 46E35, 47H30. Running title: Composition operators
متن کامل4 @bullet S C I E N C E & P R a C T I C E P E R S P E C T I V E S — a P R I L 2 0 0 7
Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and ...
متن کاملOPERATORS ON WEIGHTED BERGMAN SPACES (0<p≤1) AND APPLICATIONS
We describe the boundedness of a linear operator from Bp(ρ) = {f : D → C analytic : (∫ D ρ(1 − |z|) (1 − |z|) |f(z)| dA(z) )1/p < ∞} , for 0 < p ≤ 1 under some conditions on the weight function ρ, into a general Banach space X by means of the growth conditions at the boundary of certain fractional derivatives of a single X-valued analytic function. This, in particular, allows us to characterize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
سال: 2018
ISSN: 1578-7303,1579-1505
DOI: 10.1007/s13398-018-0564-2